Categories
Evolution New Publications Research

Coffee for the birds: connecting bird-watchers with shade-grown coffee

[vc_row][vc_column][vc_column_text]

VT News | March 2, 2021

[/vc_column_text][vc_column_text]

Since 1970, bird populations in North America have declined by approximately 2.9 billion birds, a loss of more than one in four birds. Factors in this decline include habitat loss and ecosystem degradation from human actions on the landscape.

At the same time, enthusiasm for bird-watching has grown, with more than 45 million recreational participants in the United States alone. Now, researchers are looking into how to mobilize these bird enthusiasts to help limit bird population declines.

Enter bird-friendly coffee.

Bird-friendly coffee is certified organic, but its impact on the environment goes further than that: it is cultivated specifically to maintain bird habitats instead of clearing vegetation that birds and other animals rely on.

Researchers from Virginia Tech’s College of Natural Resources and Environment, Cornell University, and Columbia University explored whether bird-friendly coffee is on the radar of bird-watchers: are they drinking it and, if not, why not? The study results were published in the journal People and Nature.

“We know bird-watchers benefit from having healthy, diverse populations of birds, and they tend to be conservation-minded folks,” explained Assistant Professor Ashley Dayer of Virginia Tech’s Department of Fish and Wildlife Conservation. “My colleagues and I wanted to dig into this key audience to determine their interest in bird-friendly coffee.”

Bird-friendly coffee is shade-grown, meaning that it is grown and harvested under the canopy of mature trees, a process that parallels how coffee was historically grown. But with most farms in Central and South America and the Caribbean converting to full-sun operations, crucial bird habitats for migrating and resident bird species are being lost.

Three people carrying bags and backpacks walk through a lush forest
Coffee pickers head to work on a shade-coffee farm in Antioquia, Colombia. Photo by Guillermo Santos.

 

“Over recent decades, most of the shade coffee in Latin America has been converted to intensively managed row monocultures devoid of trees or other vegetation,” explained Amanda Rodewald, the Garvin Professor and senior director of the Center for Avian Population Studies at the Cornell Lab of Ornithology. “As a result, many birds cannot find suitable habitats and are left with poor prospects of surviving migration and successfully breeding.”

Purchasing shade-grown coffee is one of seven simple actionsthat people can take as a step toward returning bird populations to their previous numbers. “But even simple actions are sometimes not taken by people who you would expect to be on board. Human behavior is complex — driven by knowledge, attitudes, skills, and many other factors,” explained Dayer, an affiliate of the Global Change Center housed in Virginia Tech’s Fralin Life Sciences Institute.

The research team surveyed more than 900 coffee-drinking bird-watchers to understand bird-friendly coffee behavior among bird-watchers.

“One of the most significant constraints to purchasing bird-friendly coffee among those surveyed was a lack of awareness,” said Alicia Williams, lead author and former research assistant at the Cornell Lab of Ornithology and Virginia Tech. “This includes limits on understanding what certifications exist, where to buy bird-friendly coffee, and how coffee production impacts bird habitat.”

“I was surprised to see that only 9 percent of those surveyed purchased bird-friendly coffee and less than 40 percent were familiar with it,” Williams added. “It was also interesting, though not surprising, that a large number of our respondents reported that the flavor or aroma of coffee was an important consideration in their coffee purchases, which could be a useful attribute of bird-friendly coffee to stress going forward.”

Dayer, who leads the Dayer Human Dimensions Lab, focuses on how to apply social science research to engage people in conservation efforts. “A lot of the work I do brings together a diversity of players who are really passionate about a conservation issue, and it’s been great to participate collaboratively with researchers from a range of backgrounds. This is a biological story, but it is also an economics story and a social psychology and communications story, and any solutions are going to require multiple perspectives.”

The next step to increasing awareness about shade-grown coffee and its potential impact on bird populations may include increased advertising for bird-friendly coffee, more availability of bird-friendly coffee, and collaborations between public-facing conservation organizations and coffee distributors.

Written by David Fleming

[/vc_column_text][vc_column_text]

Related story

[/vc_column_text][vc_separator][vc_column_text]

CONTACT:

Krista Timney

(540) 231-6157

[/vc_column_text][vc_separator style=”shadow”][/vc_column][/vc_row]

Categories
Evolution New Publications Research

Virginia Tech paleontologists find pterosaur precursors that fill a gap in early evolutionary history

[vc_row][vc_column][vc_column_text]

VT News | December 9, 2020

[/vc_column_text][vc_column_text]

Here’s the original story of flight. Sorry, Wright Brothers, but this story began way before your time – during the Age of the Dinosaurs.

Pterosaurs were the earliest reptiles to evolve powered flight, dominating the skies for 150 million years before their imminent extinction some 66 million years ago.

However, key details of their evolutionary origin and how they gained their ability to fly have remained a mystery; one that paleontologists have been trying to crack for the past 200 years. In order to learn more about their evolution and fill in a few gaps in the fossil record, their closest relatives had to be identified.

With the help of newly discovered skulls and skeletons that were unearthed in North America, Brazil, Argentina, and Madagascar in recent years, Virginia Tech researchers Sterling Nesbitt and Michelle Stocker from the Department of Geosciences in the College of Science have demonstrated that a group of “dinosaur precursors,” called lagerpetids, are the closest relatives of pterosaurs.

“Where did pterosaurs come from?’ is one of the most outstanding questions in reptile evolution; we think we now have an answer,” said Nesbitt, who is an associate professor of geosciences and an affiliated faculty member of the Fralin Life Sciences Institute and the Global Change Center.

Their findings were published in Nature.

Fossils of Dromomeron gregorii, a species of lagerpetid, were first collected in Texas in the 1930s and 1940s, but they weren’t properly identified until 2009. Unique to this excavation was a well-preserved partial skull and braincase, which, after further investigation, revealed that these reptiles had a good sense of equilibrium and were likely agile animals.

After finding more lagerpetid species in South America, paleontologists were able to create a pretty good picture of what the lagerpetids were; which were small, wingless reptiles that lived across Pangea during much of the Triassic Period, from 237 to 210 million years ago.

Artistic rendering of Dromomeron (foreground) and associated dinosaurs and relatives, based off of fossils from Ghost Ranch, NM. Illustration courtesy of Donna Braginetz.
Artistic rendering of Dromomeron (foreground) and associated dinosaurs and relatives, based off of fossils from Ghost Ranch, New Mexico. Illustration courtesy of Donna Braginetz.

 

And in the past 15 years, five research groups from six different countries and three continents have come together to right some wrongs in the evolutionary history of the pterosaur, after the recent discovery of many lagerpetid skulls, forelimbs, and vertebrae from the United States, Brazil, Argentina, and Madagascar.

What gave paleontologists the idea to take a closer look at lagerpetids as the closest relatives of pterosaurs? Paleontologists have been studying the bones of lagerpetids for quite some time, and they have noted that the length and shape of their bones were similar to the bones of pterosaurs and dinosaurs. But with the few fossils that they had before, it could only be assumed that lagerpetids were a bit closer to dinosaurs.

What really caused a shift in the family tree can be attributed to the recently collected lagerpetid skulls and forelimbs, which displayed features that were more similar to pterosaurs than dinosaurs. And with the help of new technological advances, researchers found that pterosaurs and lagerpetids share far more similarities than meet the eye.

Using micro-computed tomographic (µCT) scanning to reconstruct their brains and sensory systems within the recently discovered skulls, paleontologists determined that the brains and sensory systems of lagerpetids had many similarities with those of pterosaurs.

“CT data has been revolutionary for paleontology,” said Stocker, who is an assistant professor of vertebrate paleontology and an affiliated faculty member of the Fralin Life Sciences Institute and the Global Change Center.

“Some of these delicate fossils were collected nearly 80 years ago, and rather than destructively cutting into this first known skull of Dromomeron, we were able to use this technology to carefully reconstruct the brain and inner ear anatomy of these small fossils to help determine the early relatives of pterosaurs.”

One stark and mystifying finding was that the flightless lagerpetids had already evolved some of the neuroanatomical features that allowed the pterosaurs to fly, which brought forth even more information on the origin of flight.

“This study is a result of an international effort applying both traditional and cutting-edge techniques,” said Martín D. Ezcurra, lead author of the study from the Museo Argentino de Ciencias Naturales in Buenos Aires, Argentina. “This is an example of how modern science and collaboration can shed light on long-standing questions that haunted paleontologists during more than a century.”

A partial skeleton of Lagerpeton (hips, leg, and vertebrae) from ~235 million years from Argentina. Further examination of this specimen helped tie features of lagerpetids to pterosaurs. Photo courtesy of Sterling Nesbitt.
A partial skeleton of Lagerpeton (hips, leg, and vertebrae) from ~235 million years from Argentina. Further examination of this specimen helped tie features of lagerpetids to pterosaurs. Photo courtesy of Sterling Nesbitt.

 

Ultimately, the study will help bridge the anatomical and evolutionary gaps that exist between pterosaurs and other reptiles. The new evolutionary relationships that have emerged from this study will create a new paradigm, providing a completely new framework for the study of the origin of these reptiles and their flight capabilities.

With the little information that paleontologists had about early pterosaurs, they had often attributed extremely fast evolution for the acquisition of their unique body plan. But now that lagerpetids are deemed the precursors of pterosaurs, paleontologists can say that pterosaurs evolved at the same rate as other major reptile groups, thanks to the newly discovered “middle man.”

“Flight is such a fascinating behaviour, and it evolved multiple times during Earth’s history,” said Serjoscha W. Evers, of the University of Fribourg. “Proposing a new hypothesis of their relationships with other extinct animals is a major step forward in understanding the origins of pterosaur flight.”

Some questions still remain in this evolutionary mystery. Now that lagerpetids are the closest relatives of pterosaurs, why are they still lacking some of the key characteristics of pterosaurs, including the most outstanding of those – wings?

“We are still missing lots of information about the earliest pterosaurs, and we still don’t know how their skeletons transformed into an animal that was capable of flight,” said Nesbitt.

Nesbitt, Stocker, and a team of Virginia Tech graduate and undergraduate students will continue to study animals that appeared in the Triassic Period – a period of time in Earth history when many familiar groups of vertebrates, such as dinosaurs, turtles, mammal relatives, and amphibians, first appeared. If and when conditions are safe, they plan on going into the field to collect more fossils from the Triassic Period.

Maybe soon, we will have more information to put some finishing touches on the original story of flight.

If you are an undergraduate or high school student who is interested in this discovery, the Virginia Tech Department of Geosciences has a brand new Paleobiology option within the Geosciences major, which focuses on the history of life on our planet. To learn more, contact April Newcomer (apriln@vt.edu).

– Written by Kendall Daniels and Steven Mackay

[/vc_column_text][vc_separator][vc_column_text]

CONTACT:

Kristin Rose Jutras

(540) 231-6614

[/vc_column_text][vc_separator style=”shadow”][/vc_column][/vc_row]

Categories
Announcements Evolution Faculty Spotlight Global Change Research

A trans-Atlantic journey: how microbes and dust travel from Africa to the Americas

[vc_row][vc_column][vc_column_text]

VT News | September 1, 2020

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

Each year, over 180 million tons of dust are swept up from the Sahara Desert, blown across the western edge of Africa, wisped across the Atlantic Ocean, and deposited throughout the Americas. These are called dust plumes, and they carry more than just sand.

In fact, dust plumes play a crucial role in the long-range transport of microorganisms. A team led by Virginia Tech researchers in collaboration with the U.S. Geological Survey and the University of La Laguna in the Canary Islands received a $1.1 million grant from NASA to study microbial diversity in dust plumes and the physics behind the transport of dust and microbes along superhighways in the sky.

“One of the less understood aspects of dust is that these particles could be a vehicle for microbes — viruses, bacteria, fungi that can come across the Atlantic, as if hitchhiking on these dust particles,” said Hosein Foroutan, the principal investigator on the grant and assistant professor in the Department of Civil and Environmental Engineering in the College of Engineering.

Foroutan and his collaborators will take a transdisciplinary approach to study the microbial biodiversity in dust plumes by analyzing collected samples, investigating satellite data, and creating transport models. Ultimately, this research will inform experts about which microbes are being transported to the Americas and what that could mean for the health of plants, domestic animals, and people.

 

[/vc_column_text][vc_single_image image=”51384″ img_size=”600×400″ add_caption=”yes” alignment=”center”][vc_column_text]

To do this, the team is operating on an intercontinental scale. They will analyze dust samples collected from various sites between the United States and Africa, including the middle of the Atlantic. Sampling at various locations on the “dust superhighway” will allow the team to study differences in microbial biodiversity. Using DNA sequencing, culturing, and other microbiological techniques, the team will be able to determine the types, concentrations, and viability of microbes in the dust samples.

“Little is known about the diversity and viability of microbes traveling on African dust. Could devastating plant and animal pathogens be riding on African dust? If so, we would like to know where they are going and when they might arrive there,” said David Schmale, professor in the School of Plant and Environmental Sciences in the College of Agriculture and Life Sciences. As a collaborator, Schmale will work to identify microorganisms in dust samples.

But microorganisms are especially sensitive to the environment — temperature, altitude, precipitation, humidity, and ultraviolet radiation can all affect the survival of microbes. Coupled with atmospheric and satellite data, the researchers will be able to use microbial diversity data to peer into the life of microorganisms traveling in dust plumes from one continent to another.

“We’re lucky we can associate microbes with dust, which we can detect using satellites because we have no way of continuously detecting these airborne microorganisms on this scale. You’re talking about a huge scale — a couple thousand kilometers apart — and up to five to six kilometers above the surface,” said Foroutan, who is also an affiliated faculty member of the Fralin Life Sciences Institute and the Global Change Center at Virginia Tech.

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_single_image image=”51385″ img_size=”600×400″ add_caption=”yes” alignment=”center”][vc_column_text]

esearch on the microbial diversity in dust plumes can help scientists understand what kind of microbes may be blown in from overseas and how to prepare for that. Since species in the Americas have not evolved to deal with microbes native to other parts of the world, an invasive microorganism can pose a significant threat to plants, animals, or people.

“Pathogens are not respecters of international boundaries. One of my main motivations is to help farmers and others manage the risk that dust-borne microorganisms may pose. With better tracking and prediction tools, stakeholders can make informed choices about precautions they can take to halt the spread of disease and ensure a secure food supply for all of us,” said Shane Ross, a collaborator on this grant and a professor in the Department of Aerospace and Ocean Engineering. Ross studies transport using observational and simulation data and will be applying his expertise to analyze dust transport.

Due to the scale and complexity of this study, Foroutan said “no one can tackle this problem by themselves” and that interdisciplinary collaboration is key. Other investigators include Dale Griffin from the U.S. Geological Survey and Cristina González Martín from the University of La Laguna in the Canary Islands, who helped collect dust samples to analyze for this project.

As the project progresses in the future, the team hopes to put out an open call for international collaborators to contribute their samples for a more global analysis of this phenomenon.

– Written by Rasha Aridi

[/vc_column_text][vc_separator][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

CONTACT:

Steven Mackay
540-231-5035

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row]

Categories
Announcements Evolution Faculty Spotlight Global Change Research

Biological Science’s Josef Uyeda using NSF CAREER Award to capture big picture connection of macro- and micro-evolution

[vc_row][vc_column][vc_column_text]

VT News | August 27 2020

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

Scientists know a lot about evolution. And like, evolution, this knowledge is always changing, growing, becoming stronger. But for all the work done during a span of two centuries and change, scientists mostly have pictures of evolution’s history, unsorted and scattered.

Snapshot photographs if you will, strewn across a table. Josef Uyeda, an assistant professor and evolutionary biologist in the Virginia Tech Department of Biological Sciences, seeks to take all those “photographs” and make them into a photomosaic – you’ve seen them, often in movie posters or jigsaw puzzles – where hundreds of photographs are assembled to form a larger image of its own. (Say, a man’s face, or the New York City skyline.) More simply, Uyeda is taking on a massive connect-the-dots project that spans millions of years of evolution, in its smallest and largest forms, with an eye toward the future.

“Studies of ‘evolution-in-action’ have revealed much about what causes evolutionary change, including why it sometimes fails. However, it is not always obvious when these causes are also responsible for extinction and adaptation over million-year timescales — the timescale primarily relevant to the evolution and maintenance of biodiversity,” said Uyeda, a faculty member in the Virginia Tech College of Science and an affiliated member of the Virginia Tech Global Change Center.

Uyeda will use a $778,000 five-year National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program grant to carry out his study. The CAREER award is the NSF’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education.

“The goal of the grant is really to take how we study evolution across the tree of life from simply looking for patterns of how traits are related, to understanding what causes them to evolve,” Uyeda added. “How traits might evolve in response to the environment, how traits might respond to each other and trying to connect those to what we do at the microevolutionary scale, where we understand how variable traits are, the genetics underlying them, how natural selection works, and the driving processes of evolution. The goal is to bridge these together, making models smarter and allowing them to take data from both scales, rather than simply making more complicated models. If we unite those two sides together, we can get better answers to what’s happening.”

To take it a step further, Uyeda wants to predict future evolution much like meteorologist predict weather patterns hurricanes, and winter storms. This ties to climate change, and the survival of scores of fauna and flora. In weather, micro-actions in the atmosphere can lead to major- and macro-events, the butterfly effect. We know when the sunlight hits the Earth, certain parts are warmed, and where the sun does not reach as much, it is cold. It’s the predictability that Uyeda wants to bring to the study of evolution.

“With increasing rates of global change, it is vital to understand how and why species either adapt and survive, or fail to adapt and perish,” Uyeda said. “This project will build a bridge between the causes of evolution studied over short timescales and the long-term outcomes evident from existing evolutionary diversity with a new set of computational tools and resources for biology research and education. New models will integrate field, genetic, and experimental studies with patterns of trait change from across the tree of life.”

The bulk of the study will use statistics and data modeling. “It’s all based of what’s called the comparative method,” Uyeda added. “We can’t do experiments at million-year time scales, but we can look across species and see if all the species that live in a warm environment are evolving faster, or maybe all the warm-blooded organisms are evolving faster than the cold-blooded organisms. But how do we know those traits are actually related to one another? Well, we have to try and understand the entire evolutionary history through time to make sense of the patterns we see, and we have to use models to fill in the evolutionary history that we don’t see.”

This, of course, is difficult. The data sets of evolution from across the globe, the “tree of life” as Uyeda says, the fossil record, and in modern day studies of “evolution in action” are often disconnected. So, Uyeda and his team – which includes graduate students, a post-doc, and partner universities, will hit at the project in pieces.

“We’re going to take a page out of how we study DNA evolution, which borrows heavily from things like the theory of population genetics, and the understanding of how mutation and DNA actually evolves, to construct the tree of life.” To do the same for traits, they will look at what’s known from the evolution of biomechanics, the underlying genetics of mammal tooth evolution, and the millennia of fossil records and integrate these together to connect patterns from short to long timescales.

“I have not collected most of the data myself, and it would be impossible for me to do so alone. But I am trying to pull together existing datasets and bring them together in a single analysis. If we do so, then we can start to connect the big picture patterns of evolution to the short time scales we often use to study it, where we understand cause and effect,” Uyeda said.

“We want to look to the past to inform what we do in the future, as these are changes play out over millions of years. If we don’t understand how those processes work, then how can we understand what the future impacts will be of what we are doing today?”

 

[/vc_column_text][/vc_column][/vc_row]

Categories
Disease Evolution Research

Viruses don’t have a metabolism, but some have the building blocks for one

[vc_row][vc_column][vc_column_text]From VT News | April 6, 2020

In satellite photos of the Earth, clouds of bright green bloom across the surface of lakes and oceans as algae populations explode in nutrient-rich water. From the air, the algae appear to be the primary players in the ecological drama unfolding below.

But those single-celled organisms we credit for influencing the aquatic environment at the base of the food chain may be under the influence of something else: viruses whose genes can reconfigure their hosts’ metabolism.

In a new study published in Nature Communications, a research team from Virginia Tech reported that they had found a substantial collection of genes for metabolic cycles — a defining characteristic of cellular life — in a wide range of “giant viruses.”

Giant viruses disrupt the familiar narrative about viruses — that they’re the tiniest denizens of the microbiome, little more than a stripped-down husk of an organism, just a few genes’ worth of DNA or RNA folded into a shell so small you need an electron microscope to see it. In fact, the giant viruses, 10 times the size of their more compact cousins and with hundreds or even thousands of genes, are so unlike the rest of the family that when the first species was discovered in 1992, researchers dismissed it as bacteria.

They were eventually correctly classified, but even then considered an isolated curiosity. Frank Aylward, an assistant professor of biological sciences in the College of Science who led the research, explained that routine surveys of viral diversity often missed them for a prosaic reason: They’re so big that they get caught in the filters researchers use to separate viruses from bacteria and other larger organisms.

But gradually, it became clear that these oversized viruses were everywhere and were especially plentiful in aquatic environments, where they infect single-celled organisms like algae and protozoans. That’s important, because the metabolism of those comparatively complex organisms — what nutrients they consume, what waste they produce — heavily influences the health of the oceans and lakes they live in and, ultimately, the planet’s carbon cycle.

“They’re all over the biosphere. It’s just we haven’t really paid attention to them,” Aylward said.

Aylward started paying attention after postdoctoral researcher Monir Moniruzzaman, the lead author of the new study,  joined the lab in 2018.

“Monir is the giant virus expert,” Aylward laughed. “He just wouldn’t stop talking about giant viruses, so finally I said, okay, we’ll start working on them.”

Working from publicly available metagenome databases, which house jumbles of genetic data from the vast array of organisms in a variety of environments, Moniruzzaman began to tease out genomes that belonged to giant viruses. Using known giant-virus genes as markers and patterns in the data as clues, he pieced together genomes for 501 giant viruses, mostly from marine and freshwater environments. Those genomes contained the standard features you’d expect — genes that direct the construction of the virus’ protective shell, and that allow it to infect and kill its host.

They didn’t expect to see so many metabolic genes. Metabolism, the collection of processes cells use to extract energy from nutrients, is a hallmark of cellular life, absent from viruses almost by definition. Nevertheless, these giant viruses seemed to have genes linked to several key metabolic pathways in living cells.

These weren’t the first metabolic genes that had turned up in viral genomes, but they included many functions that had never been seen in viruses. Other examples had been isolated viral genes that were virtually identical to their cellular counterparts, suggesting they had been acquired from the host by chance during an infection and pasted into the virus’ genome relatively recently: vestigial artifacts of invasions past rather than functional tools.

The genes Moniruzzaman and Aylward found, on the other hand, comprised large portions of familiar metabolic pathways but had their own unique signature.

“It implies that the viruses have had these genes for millions of years, even billions of years, and they’re virus-specific metabolic genes,” Aylward explained.

That suggests that these genes aren’t just genetic flotsam, but working components the virus deploys as it commandeers its host. In this case, the researchers say, the implication is that the virus is altering the cell’s metabolism.

“Once viruses infect a cell, we can’t think of the cell as being its own autonomous entity anymore,” Aylward says. “The fundamental aspects of cellular physiology are being rewired by these viruses upon infection.”

Changes in the host’s metabolism can shift the balance of nutrients being consumed and released into the environment, giving viruses sway over aquatic biogeochemistry. Even though viruses aren’t alive, Aylward explained, “they are significantly altering the course of life every day in the environment.”

The next step is figuring out how by using experimental studies that can help uncover how these genes function and interact with the host’s native metabolism. The team will also probe the evolution of these genes to determine how they slipped into the viral genome, and when.

Discovering these genes, which stretch our ideas about how giant viruses influence their environment, has broader implications for virology. Finding the building blocks for metabolism in something that’s not alive blurs the distinction between what’s alive and what isn’t.

“I think of these Venn diagrams, where it used to be that there was very little overlap, and the more we learn, the more they continue to overlap,” Aylward said. “Now it’s gotten to the point where there are actually very few genes that are only found in cells, and very few genes that are only found in viruses. In terms of the genomic repertoires, they have much more in common than we would actually expect.”

Moniruzzaman suspects that there are more surprises lurking in these genomes, which are stuffed with what he describes as “viral dark matter” — genes that keep surfacing in studies of giant viruses but whose functions are still unknown.

“Don’t you think they’re fascinating? I just think they’re fascinating,” Moniruzzaman marvels. “They’re just a bag of mystery. They’re like a big forest and you are standing in front of the forest and you don’t know what’s in it. And I think this is the right time to understand it. I think they’re mysterious, that’s what I think.”

This research was supported in part by a Junior Faculty Award from the Institute for Critical Technology and Applied Science. Aylward is an affiliated faculty member of the Global Change Center, housed under the Fralin Life Sciences Institute.

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row]

Categories
Blog Climate Change Conservation Disease Drinking water Evolution Faculty Spotlight Food & Agriculture Global Change Research

The GCC welcomes seven new faculty affiliates

[vc_row][vc_column][vc_column_text]

Meet our newest faculty affiliates:

 

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47437″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. Cully Hession

Professor, Department of Biological Systems Engineering

Research focus: His lab focuses stream channel structure and sediment dynamics, influence of human activities on streams, techniques for measuring and improving in-stream habitat, and development of technologies and strategies for successful stream restoration.  Current research focuses on using drones and drone-based lidar to map riverscapes and tracer studies to better understand sediment transport and fate. Dr. Hession is also PI/co-Director of an interdisciplinary research and extension training program called “Training Future Leaders to Solve Resource Challenges at the Confluence of Water and Society.”[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47579″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. Florian Zach

Assistant Professor, Deparment of Hospitality & Tourism Management

Research interests:  Dr. Zach is interested in strategic issues that support the sustainable development of tourism destinations. He has investigated the inter-organizational collaboration and networks to understand how destination stakeholders collectively develop tourism innovations. Additionally, he works with colleagues to understand human-computer interaction issues stemming from the use of cutting-edge technologies in the context of tourism. Current projects include exploring the effects of summer adventure parks built by ski resorts in the Austrian Alps as a response to shorter winter and longer summer seasons and also the impacts of the 2018 Florida Red Tide on hotel & short-term rentals (Airbnb & similar).[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47688″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. J. Leighton Reid

Assistant Professor, School of Plant & Environmental Sciences

Research interests: Dr. Reid’s research interests encompass tropical forest restoration in Latin America and Madagascar as well as temperate forest, woodland, and grassland restoration in the eastern United States. Specifically, he investigates how local restoration interventions interact with their surrounding landscape to affect biodiversity recovery, how keystone plant species can be used to catalyze ecological succession, why some restored ecosystems persist much longer than others, and what soil and environmental factors limit the recolonization of rare plants in regenerating ecosystems.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47595″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. Rachel Reid

Research Scientist, Department of Geosciences

Research interests: Dr. Reid is a paleoecologist interested in how disturbances, such as climate and environmental change, impact species, ecosystems, and their interactions over a range of timescales. As a Research Scientist at Virginia Tech, Dr. Reid runs the Stable Isotope Laboratory.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47396″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. Theo Lim

Assistant Professor, Department of Urban Affairs & Environmental Planning

Research interests: Dr. Lim’s research focuses on the environmental planning of linked land, water, infrastructure, and social systems. His interests include urban hydrology, distributed stormwater practices, community green infrastructure, energy planning in agricultural and rural settings, land development impacts on the hydrological cycle, and applications of data science in urban & environmental planning.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47637″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. Ben Gill

Associate Professor, Department of Geosciences

Research interests: Dr. Gill specializes in reconstructing the present and past chemical cycles on our planet. He leads the Biogeochemistry Laboratory Group at Virginia Tech. The main research focus of his group concerns understanding the connections between major changes in the environment (oxygenation/deoxygenation oceans, climatic warming and cooling, etc.) and major events in the history of life (originations, diversifications and mass extinctions).[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”47465″ img_size=”275×355″ style=”vc_box_border”][/vc_column][vc_column width=”1/2″][vc_column_text]

Dr. James Weger-Lucarelli

Research Assistant Professor, Department of Biomedical Sciences & Pathology

Research interests: Dr. Weger-Lucarelli’s research focuses on understanding viral and host determinants that mediate disease severity, transmission, evolution, and protection against mosquito-borne viruses. The Weger-Lucarelli lab uses molecular, virological, and computational methods to study these interactions, with the goal to recognize and study emerging viral threats before they product massive outbreaks.  He is also working to produce innovative vaccines to prevent mosquito-borne viral disease.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator style=”shadow” border_width=”5″][/vc_column][/vc_row]

Categories
Blog Evolution News Research Video

Geosciences’ Shuhai Xiao finds fossils dating back 550 million years, among earliest known displays of animal mobility

[vc_row][vc_column][vc_column_text]

Header image: A fossilized trail of the animal Yilingia spiciformis, dating back 550 million years. The trail was found in China by a team of scientists including Shuhai Xiao of the Virginia Tech College of Science.

VT NEWS | September 4, 2019

In a remarkable evolutionary discovery, a team of scientists co-led by a Virginia Tech geoscientist has discovered what could be among the first trails made by animals on the surface of the Earth roughly a half-billion years ago.

Shuhai Xiao, a professor of geosciences with the Virginia Tech College of Science, calls the unearthed fossils, including the bodies and trails left by an ancient animal species, the most convincing sign of ancient animal mobility, dating back about 550 million years. Named Yilingia spiciformis – that translates to spiky Yiling bug, Yiling being the Chinese city near the discovery site – the animal was found in multiple layers of rock by Xiao and Zhe Chen, Chuanming Zhou, and Xunlai Yuan from the Chinese Academy of Sciences’ Nanjing Institute of Geology and Palaeontology.

The findings are published in the latest issue of Nature. The trials are from the same rock unit and are roughly the same age as bug-like footprints found by Xiao and his team in a series of digs from 2013 to 2018 in the Yangtze Gorges area of southern China, and date back to the Ediacaran Period, well before the age of dinosaurs or even the Pangea supercontinent. What sets this find apart: The preserved fossil of the animal that made the trail versus the unknowable guesswork where the body has not been preserved.

Shuhai Xiao

“This discovery shows that segmented and mobile animals evolved by 550 million years ago,” Xiao said. “Mobility made it possible for animals to make an unmistakable footprint on Earth, both literally and metaphorically. Those are the kind of features you find in a group of animals called bilaterans. This group includes us humans and most animals. Animals and particularly humans are movers and shakers on Earth. Their ability to shape the face of the planet is ultimately tied to the origin of animal motility.”

The animal was a millipede-like creature a quarter-inch to an inch wide and up to 4 inches long that alternately dragged its body across the muddy ocean floor and rested along the way, leaving trails as long as 23 inches. The animal was an elongated narrow creature, with 50 or so body segments, a left and right side, a back and belly, and a head and a tail.

The origin of bilaterally symmetric animals — known as bilaterians — with segmented bodies and directional mobility is a monumental event in early animal evolution, and is estimated to have occurred the Ediacaran Period, between 635 and 539 million years ago. But until this finding by Xiao and his team, there was no convincing fossil evidence to substantiate those estimates. One of the recovered specimens is particularly vital because the animal and the trail it produced just before its death are preserved together.

Remarkably, the find also marks what may be the first sign of decision making among animals – the trails suggest an effort to move toward or away from something, perhaps under the direction of a sophisticated central nerve system, Xiao said. The mobility of animals led to environmental and ecological impacts on the Earth surface system and ultimately led to the Cambrian substrate and agronomic revolutions, he said.

“We are the most impactful animal on Earth,” added Xiao, also an affiliated member of the Global Change Center at Virginia Tech. “We make a huge footprint, not only from locomotion, but in many other and more impactful activities related to our ability to move. When and how animal locomotion evolved defines an important geological and evolutionary context of anthropogenic impact on the surface of the Earth.”

Rachel Wood, a professor in the School of GeoSciences at University of Edinburgh in Scotland, who was not involved with the study, said, “This is a remarkable finding of highly significant fossils. We now have evidence that segmented animals were present and had gained an ability to move across the sea floor before the Cambrian, and more notably we can tie the actual trace-maker to the trace. Such preservation is unusual and provides considerable insight into a major step in the evolution of animals.”

The study was supported by the Chinese Academy of Sciences, the National Natural Science Foundation of China, the U.S. National Science Foundation, and the National Geographic Society.

Related story:

Virginia Tech-led study finds oldest footprints of bug dating back 540-plus million years

[/vc_column_text][vc_separator][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

CONTACT:
Steven Mackay

540-231-5035

[/vc_column_text][/vc_column][/vc_row]

Categories
Blog Evolution Ideas Interfaces of Global Change IGEP Science Communication Uncategorized

Evolution2019 Dispatches: Navigating relationships between science and the public

[vc_row][vc_column][vc_column_text]

From the Society for the Study of Evolution Blog 
By Kerry Gendreau | July 5, 2019

Header image art by Dave Cutler.[/vc_column_text][vc_separator style=”dotted”][vc_row_inner][vc_column_inner][vc_column_text]

“To be maximally helpful in society, scientists in academia need to take collective action to engage effectively.”    
– Jane Lubchenco

[/vc_column_text][/vc_column_inner][/vc_row_inner][vc_column_text]How do we bridge the gap between scientific and public knowledge and address the resulting disconnect between data and public policy? The American Society of Naturalists’ Vice Presidential Symposium at this year’s Evolution meeting, entitled “Politics, the public, and science: navigating the new reality,” addressed this topic as a call to action. Organized by professor and science writer Doug Emlen, this symposium brought together four science communicators from different fields: journalist and science writer Carl Zimmer, professor and author of the science blog Dynamic Ecology Meghan Duffy, executive director of The Story Collider podcast Liz Neeley, and ecologist and political advisor Jane Lubchenco.[/vc_column_text][vc_single_image image=”30927″ img_size=”large” add_caption=”yes” alignment=”center”][vc_column_text]Carl Zimmer started the discussion by addressing the mounting crisis in journalism of fabricated news and “alternative facts,” touching on the common theme uniting all of the talks: how do we get people to recognize credible news sources and to understand the information that they provide? He referenced the website Natural News, which uses its platform to propagate anti-vaccination and anti-science sentiments to advertise “natural” and holistic health products, noting that Natural News had more followers than the New York Times before being banned from Facebook for providing misleading and inaccurate information. He pointed out that foreign intelligence agencies promote such websites to exacerbate the polarization of news sources and create discord among US citizens.

This bombardment with discordant information has resulted in widespread mistrust of scientific evidence, which is reflected in recently proposed bills like the Honest Act (H.R. 1430), which may limit the use of scientific data for environmental policy decisions. Environmental policy depends on environmental science, and it should be obvious that scientific expertise is critical to making rational and sustainable environmental policy decisions, yet this bill was passed in the House in 2017 without amendment before being stalled in the Senate.

As a solution to such issues, Zimmer emphasized the need for education reform, suggesting that public schools provide courses in digital literacy (the ability to assess the credibility of information found on the internet) and basic statistics.

Picking up on the idea of scientific literacy, Meghan Duffy discussed her experiences trying to incorporate lessons on climate change in her undergraduate biology classroom. She showed some striking results from surveys of undergraduate students suggesting that, while most students acknowledge that climate change is a real threat, they do not necessarily understand what it is or what is driving it. She stressed the importance of teaching climate literacy to undergraduate biology students by equipping them not only with facts, but with the capability to make informed decisions about climate-related policy. I realized that, coming from a background in molecular biology and biotechnology, I was never asked to read a science-related bill or to know a politician’s stance on environmental issues during my undergraduate studies. This was during a time at which major climate legislation was being proposed. Had we discussed the costs and benefits of this proposed legislation in school and had someone imparted to me the power of my voice in government, I would have taken an active role in advocacy ten years ago when we were still talking about climate change mitigation rather than adaptation.

Jane Lubchenco and Liz Neeley focused on effective communication, giving advice on how to engage the public by keeping our messages simple and accessible. Neeley also discussed the importance of properly framing conversations about science and the public. A popular narrative among scientists has been the idea that policymakers are engaged in a “war on science”; however, this framework, said Neeley, may be detrimental to the public opinion of the scientific community. The panelists collectively encouraged incorporating a human element into our discussions about science, by building relationships with our audiences, actively listening, incorporating warmth into our conversations, and acknowledging the uncertainty and messiness that is inevitably a part of all science, rather than just providing facts and arguments.

Lubchenco pointed out that scientists have a tendency to dictate rather than to inform, highlighting this as one of the underlying causes of the current disconnect between scientists and the community. She went on to illustrate the effectiveness of a two-way scientific conversation when she recalled her experience briefing then-Vice President Joe Biden on the potential effects of a major oil spill in the Gulf of Mexico. Biden was amazed at her straightforward explanations, which he didn’t expect from a scientist.

Lubchenco ended her talk by stressing the urgency of taking action to increase scientific literacy and to bridge the gap between science and the public. Scientific advancement need not be limited to scientists but should be co-created by listening to and addressing public needs and fostering two-way conversations. We need to promote public understanding of the use and interpretation of data rather than suppressing it. If we want to use scientific knowledge to make a difference,academics need to recognize their responsibility to teach the citizens of tomorrow and we, as scientists, need to actively and honestly share our stories and opinions with the public and with our elected representatives.[/vc_column_text][vc_separator style=”shadow”][/vc_column][/vc_row][vc_row][vc_column width=”1/4″][vc_single_image image=”18265″ img_size=”150×150″][/vc_column][vc_column width=”3/4″][vc_column_text]Kerry Gendreau is a PhD candidate at Virginia Tech and an IGC Fellow. She studies genome evolution and adaptation in snakes and salamanders, and is particularly keen on the evolution of nervous systems and sensory perception.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator][/vc_column][/vc_row]

Categories
Accolades Evolution Research Water

Biological Sciences’ Frank Aylward awarded Simons Foundation grant to study evolution of oceans

From VT NewsMay 24, 2019

Frank O. Aylward, an assistant professor with the Department of Biological Sciences in the Virginia Tech College of Science, has been awarded a Simons Early Career Investigator in Marine Microbial Ecology and Evolution Award.

The three-year, $540,000 grant will help Aylward to understand evolutionary trends in prokaryotes and the roles they play in carbon and nitrogen cycling, and other biogeochemical processes that are vital to the Earth’s climate. The work, focused on computational genomics, will look at how these microbes have evolved in the ocean during the course of billions of years, and how they may change again.

“By understanding how microbes have evolved to live in the ocean, we can begin to predict how they might respond to future changes in climate and ocean acidification,” Aylward said. “Many microbial groups live in the nutrient depleted waters of the oceanic gyres of the globe, and these environments are expanding due to climate change. We want to learn what these microbes do and how they evolved into that environment, since they will be more abundant in the future.”

The Simons Foundation division of Life Sciences seeks to advance research on fundamental questions in biology, currently focuses on origins of life, microbial oceanography, microbial ecology and evolution, and support of early career scientists, according to the group’s website.

Aylward is also an affiliate faculty member of the systems biology program, part of the Academy of Integrated Science within the College of Science, and a member of the Global Change Center at Virginia Tech, part of the Fralin Life Sciences Institute. He researches microbial ecology and diversity, and genomics and metagenomics, including how microbial communities are shaped and function.

Aylward previously won a 2018 Alfred P. Sloan Research Fellow in Ocean Science worth $65,000, to fund personnel in his lab and to purchase a server for computational genomic research.

He earned a bachelor’s degree in in biochemistry from the University of Arizona in 2008 and a doctoral degree in microbiology from the University of Wisconsin-Madison in 2013, with postdoctoral research work following at The Massachusetts Institute of Technology and University of Hawaii at Mānoa.

Related story:

Biological sciences’ Frank Aylward awarded 2018 Alfred P. Sloan Fellowship in Ocean Sciences 

[hr_shadow]
CONTACT:
Steven Mackay
540-231-5035

[hr]

Categories
Accolades Evolution New Publications News

Virginia Tech paleontologist finds, names new 3-foot-tall relative of Tyrannosaurus rex

[vc_row][vc_column][vc_column_text]

From VT News

May 8, 2019
 

Header image: An artist’s rendering of how Suskityrannus hazelae may have looked. Artwork by Andrey Atuchin.

A new relative of the Tyrannosaurus rex – much smaller than the huge, ferocious dinosaur made famous in countless books and films, including, yes, “Jurassic Park” – has been discovered and named by a Virginia Tech paleontologist and an international team of scientists.

The newly named tyrannosauroid dinosaur – Suskityrannus hazelae – stood roughly 3 feet tall at the hip and was about 9 feet in length, the entire animal only marginally longer than the just the skull of a fully grown Tyrannosaurus rex, according to Sterling Nesbitt, an assistant professor with Department of Geosciences in the Virginia Tech College of Science. In a wild twist to this discovery, Nesbitt found the fossil at age 16 whilst a high school student participating in a dig expedition in New Mexico in 1998, led by Doug Wolfe, an author on the paper.

In all, Suskityrannus hazelae is believed to have weighed between 45 and 90 pounds. The typical weight for a full-grown Tyrannosaurus rex is roughly 9 tons. Its diet likely consisted of the same as its larger meat-eating counterpart, with Suskityrannus hazelae likely hunting small animals, although what it hunted is unknown. The dinosaur was at least 3 years old at death based on an analysis of its growth from its bones.

Sterling Nesbitt and fossil remains of Drawing of Suskityrannus hazelae
Sterling Nesbitt and fossil remains of Suskityrannus hazelae, which he found at age 16 in 1998.

The fossil dates back 92 million years to the Cretaceous Period, a time when some of the largest dinosaurs ever found lived.

Suskityrannus gives us a glimpse into the evolution of tyrannosaurs just before they take over the planet,” Nesbitt said. “It also belongs to a dinosaurian fauna that just proceeds the iconic dinosaurian faunas in the latest Cretaceous that include some of the most famous dinosaurs, such as the Triceratops, predators like Tyrannosaurus rex, and duckbill dinosaurs like Edmotosaurus.”

The findings are published in the latest online issue of Nature Ecology & Evolution. In describing the new find, Nesbitt said, “Suskityrannus has a much more slender skull and foot than its later and larger cousins, the Tyrannosaurus rex”. The find also links the older and smaller tyrannosauroids from North America and China with the much larger tyrannosaurids that lasted until the final extinction of non-avian dinosaurs.

(Tyrannosaurus rex small arm jokes abound. So, if you’re wondering how small the arms of Suskityrannus were, Nesbitt and his team are not exactly sure. No arm fossils of either specimen were found, but partial hand claws were found. And, they are quite small. Also not known: If Suskityrannus had two or three fingers.)

Sterling Nesbitt at age 16
Sterling Nesbitt at age 16 in western New Mexico, where he found the fossil remains of what would be named Suskityrannus hazelae. Photo by Hazel Wolfe.

Two partial skeletons were found. The first included a partial skull that was found in 1997 by Robert Denton, now a senior geologist with Terracon Consultants, and others in the Zuni Basin of western New Mexico during an expedition organized by Zuni Paleontological Project leader Doug Wolfe.

The second, more complete specimen was found in 1998 by Nesbitt, then a high school junior with a burgeoning interest in paleontology, and Wolfe, with assistance in collection by James Kirkland, now of the Utah Geological Survey. “Following Sterling out to see his dinosaur, I was amazed at how complete a skeleton was lying exposed at the site,” Kirkland said.

For much of the 20 years since the fossils were uncovered, the science team did not know what they had.

“Essentially, we didn’t know we had a cousin of Tyrannosaurus rex for many years,” Nesbitt said. He added the team first thought they had the remains of a dromaeosaur, such as Velociraptor. During the late 1990s, close relatives Tyrannosaurus rex simply were not known or not recognized. Since then, more distant cousins of Tyrannosaurus rex, such as Dilong paradoxus, have been found across Asia.

Jaws vs. jaws: Suskityrannus hazelae and Tyrannosaurus rex
Geosciences Assistant Professor Sterling Nesbitt holds the partial skull of the tyrannosauroid Suskityrannus hazelae, found in western New Mexico in 1998. He holds the fossil over the cast of a full-sized partial jaw lower jaw Tyrannosaurus rex.

The fossil remains were found near other dinosaurs, along with the remains of fish, turtles, mammals, lizards, and crocodylians. From 1998 until 2006, the fossils remain stored at the Arizona Museum of Natural History in Mesa, Arizona. After 2006, Nesbitt brought the fossils with him through various postings as student and researcher in New York, Texas, Illinois, and now Blacksburg. He credits the find, and his interactions with the team members on the expedition, as the start of his career.

“My discovery of a partial skeleton of Suskityrannus put me onto a scientific journey that has framed my career,” said Nesbitt, also a member of the Virginia Tech Global Change Center. “I am now an assistant professor that gets to teach about Earth history.”

The name Suskityrannus hazelae is derived from “Suski,” the Zuni Native American tribe word for “coyote,” and from the Latin word ‘tyrannus’ meaning king and ‘hazelae’ for Hazel Wolfe, whose support made possible many successful fossil expeditions in the Zuni Basin. Nesbitt said permission was granted from the Zuni Tribal Council to use the word “Suski.”

Funding for Nesbitt and his team’s research into Suskityrannus came from the Discovery Channel, the Virginia Tech Department of Geosciences, and the American Museum of Natural History. Additional scientists on the team come from the University of Edinburgh, the Natural History Museum of Los Angeles, the University of Utah, and several more institutions.

[/vc_column_text][vc_column_text]

[hr_shadow]

[hr]

[/vc_column_text][/vc_column][/vc_row]